Integromat / MAKE

Dreaming of adding brains to your Integromat automation workflow? Seek no more, is the easy way of embedding some ML top your processes.

Here's an example how things can look for you! This workflow watches for new rows in a Google Sheet, then uses to predict the accounting category based on row data, and uses Router to send ones with good predictions to elsewhere than the ones with not confident enough predictions.

Creating schema to

We recommend uploading some data first, as this way you can ensure everything is set up properly to receive your data and make predictions.

Making predictions : HTTP/Make a request

The easiest way is to amke HTTP calls to API. In Integromat, look for Activity type HTTP, and Action Make a request.

Then let's do some config to get the HTTP request set right. Follow these steps, together with below screenshot.

  • URL: this is the API endpoint in you are calling. In our case we do Predictions. Also note that you should get your own instance url from Console.

  • Request method is most of the time POST. Check the documentation of each's end point to make sure you get this one right.

  • Headers need to contain your API key. Name is x-api-key and the value you'll find from your Console in the instance details. Note that for read only queries you can use Read-Only key, but for writing or altering data you need the separate Read/Write key.

  • Body type is Raw, with Content type being JSON.

  • Request content is where you put the Predictive Query, that essentially defines what is predicting. Integromat has a really easy way of adding the content from your previous action to the query. Check the example with green highlighted text. Tip! By adding "limit": 1 to your query, the usage of results is easier as you only have the top prediction.

  • You should check the "Parse response" box, as this will make the next steps much easier!

With that, you are already good to go! However, let's look at a few more things.

Use of prediction confidence

Integromat's Routers are a super-easy way of deciding what to do with predicted data, according to the confidence of the prediction. In our example here, we have chosen the condition to be$p, which essentially is the confidence of the given prediction. Then we have chosen to send entries with higher than 90% confidence to continue with automated workflow, and all the rest have a different way of processing.


We love Integromat! Check below how easy it is to debug your workflow! Use the magnifying glass to view the full input and output with For example ,the highlight here contains the first predicted result from $p means the probability (confidence), field denotes what was the prediction target and feature contains the predicted value.

Adding data to

In order to send new data in to your instance, you would be using the same HTTP Action called Make a request. Instead of using's prediction end points, you simply use Data API instead. As Integromat mostly operates on entry by entry basis, the most practical approach is to use single entry upload.

Last updated